Semi-discretization Algorithm for Option Pricing in CEV Jump- diffusion Model
نویسنده
چکیده
This paper proposes an option pricing technique we developed to approximate hedge jump risk under a CEV jumpdiffusion model. First, we established the options pricing model and the its partial differential equation by applying the Itô formula and non-arbitrage principle based on approximating hedge jump risk approximation; we next developed the concrete numerical algorithm for the equation by semi-discretizing the spatial variable. Finally, we verified the model’s stability, convergence and effectiveness through numerical experiments on a simulated pricing option scenario.
منابع مشابه
Option Pricing on Commodity Prices Using Jump Diffusion Models
In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...
متن کاملOption Pricing with Constant Elasticity of Variance (CEV) Model
Abstract In this work we propose an approximate numerical method for pricing of options for the constant elasticity of variance (CEV) diffusion model. We prove firstly the existence and uniqueness of the solution in weighted Sobolev space, and then we propose the finite element method and finite difference method to solve the considered problem. Therefore, we compare the obtained results by the...
متن کاملOption Pricing in the Presence of Operational Risk
In this paper we distinguish between operational risks depending on whether the operational risk naturally arises in the context of model risk. As the pricing model exposes itself to operational errors whenever it updates and improves its investment model and other related parameters. In this case, it is no longer optimal to implement the best model. Generally, an option is exercised in a jump-...
متن کاملPricing of Commodity Futures Contract by Using of Spot Price Jump-Diffusion Process
Futures contract is one of the most important derivatives that is used in financial markets in all over the world to buy or sell an asset or commodity in the future. Pricing of this tool depends on expected price of asset or commodity at the maturity date. According to this, theoretical futures pricing models try to find this expected price in order to use in the futures contract. So in this ar...
متن کاملNumerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process
In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...
متن کامل